BIOTECHNOLOGY

THESIS AND NON-THESIS

MASTER'S PROGRAM 2018-2019

COURSE CONTENTS

CODE	COURSE
	CONTENTS
BYT 501	INTRODUCTION TO BIOTECHNOLOGY: The history of biotechnology and its main application areas, Biological systems used in biotechnology: prokaryotes, eukaryotes. Traditional biotechnology applications, microorganisms important in terms of microbial biotechnology, fermentation. Technical principles of fermentation. Industrial fermentation, scale-up, application areas. Bioenergy: Energy production by biotechnological methods. Environmental biotechnology and its applications: Waste water treatment, biomining, bioremediation. Pharmaceutical biotechnology. Animal cell culture and biotechnology. Agricultural biotechnology. Plant tissue culture. Bioinformatics and Diatectorian Distantional and athion
BYT 502	MICROBIOLOGY AND MICROBIOLOGICAL TECHNIQUES: In this context, nucleic acid structure and function, mutations and variations, regulation of gene expression, bacteriophage genetics, plasmids, gene transfer, genomic plasticity, genomic modification, DNA repair, genetic methods in the study of microorganisms, gene mapping and genomics, bacterial cell compartmentation and sporulation, immobilization of microorganisms and microbiological techniques will be taught.
ENS501	ARAŞTIRMA VE YAYIN : Bilim, bilgi, bilimsel araştırma, paradigmalar, Nicel araştırma yaklaşımı, Nitel araştırma yaklaşımı, yaklaşımların eğitim araştırmalarına etkisi, araştırma süreci, etik ve bilimsel etik, araştırmanın yazımı, hipotez üretme ve tez, makale ve tez bölümlerinin içerikleri gibi, bilimsel araştırma yöntemlerine ilişkin bilgilerin verilmesi, tez aşaması için ön hazırlığın tamamlanması, proje olanakları ve proje yazımı.
BYT 504	. SEMINAR : The aim of this course is to examine, research, present and discuss current biotechnology issues. Seminars; presented by lecturers, invited speakers, and students enrolled in the course. Thesis work can be presented as part of student presentations.

BYT 510	ADVANCED ANALYTICAL METHODS: Introduction to separation methods,
	mixtures, separation of physical and chemical mixtures, Thin layer paper and
	column chromatography, Application, Adsorption and dispersion
	chromatography, Ion exchange, gel permation and affinity chromatography,
	High performance liquid chromatography (HPLC). HPLC application, Gas
	Atomic absorption-ICP)
BYT 511	Purification Techniques of Biomolecules: In this course, the techniques used in the
	purification of biomolecules, especially enzymes and other proteins, will be
	discussed in detail. The following topics will be covered in the course: An overview
	of biodegradation; characteristics of purification techniques; removal of insoluble
	product purification: principles of chromatographic separations: ion exchange
	chromatography; gel permeation chromatography; hydrophobic interaction
	chromatography; adsorption chromatography; affinity chromatography; high
	performance liquid chromatography; ultrafiltration; electrophoresis; analysis of
	protein purity.
BYT 512	IMMOBILIZED ENZYME AND CELL TECHNOLOGY : Enzyme and cell
	immobilization methods and applications of immobilized catalysts will be
	course: Classification of immobilized enzymes: matrices for enzyme
	immobilization; enzyme immobilization methods; enzymes immobilized in
	soluble form; effects of immobilization methods on the kinetic properties of
	enzymes; immobilized cell fermentation versus conventional fermentation; cell
	immobilization techniques; activities of immobilized cells; applications of immobilized cells; applications of
BVT 513	ADVANCED CELL CULTURE TECHNIQUES: In this course; cell culture
511 515	conditions, cell lines, in vitro cytotoxicity tests, gene transfer (transfection) in cell
	culture, Design of reporter plasmids, use of RNA technologies in cell culture,
	retroviral infection, reporter retrovirus design, single cell colony formation, RNA
	Isolation from cells, RNA quality analysis methods, Analysis methods in Flow
	practically.
BYT 514	BIOMATERIALS: The concept of biomedical materials definition classification
511014	and principles of biomaterials. Biomaterial production techniques,
	characterization and structural analysis of biomaterials. Biopolymers, Medical
	Biomaterials and Biopolymers. The concept of biocompatibility. Investigation of
	biocompatibility of biomaterials. Interaction of implant biomaterials with cell and
	developments in the field of biomedical materials.
BYT 516	NANOBIOTECHNOLOGY: General Subjects Related to Nanobiotechnology and
	Fundamental Concepts in Bionanotechnology, Introduction to Nanotechnology,
	Micro Dimensions and Limitations, Definition and Importance of Nanosize,
	Application of Biological Conjugation in Nanotechnology
BVT 517	BIOINFORMATIC: The aim of this course is to assist students in using
511317	bioinformatics tools to evaluate data obtained from biological systems. Course
	topics include analysis of biological sequences, biological databases and their
	use, structural and functional genomics and gene expression studies, protein
	structure, folding and protein-protein interactions.

BYT 518	ADVANCED CHEMICAL COMPUTATIONS Hartee-Fock Models, Hartree-Fock
	Self ConsistentField Method(Hf-Scf) Ab Initio Molecular Orbital Theory
	Fundamental Sets'2 Basis Function/BassSets" Hartree-Fock Transactional
	Functional Methods, Density Experimental Molecular Orbital Methods, What Can
	Be Done with Hespsal Methods? How Do Programs Work? Introducing the
	Molecule to the Program. Energy
	Calculations Conformational Equilibrium Conformations of Cyclohexane
	Derivatives Substituent Effect Conformational Effects Potential Energy
	Surfaces (PES) Global Minimum Problem Reaction Thermochemistry Kinetics
	and Thermodynamics
	Control Hammond Postulate Finding and Identifying Transition Positions
BYT 519	ADVANCED PLANT BIOTECHNOLOGY
211010	Plant Molecular Biology: Organization and function of the Plant nuclear genome
	of Arabidopsis thaliana.
	Gene delivery system: Particle gun bombardment, microiniection.
	electroporation. Plant Viruses. Agrobacterium-mediated gene transfer. Genetic
	organization of Ti plasmids Functions encoded by integrated T-DNA. Molecular
	mechanism involved in the transformation of plants by Agrobacterium
	tumefaciens. Genetic engineering of plants for insect resistance: Bt toxins, use
	of protease inhibitors Transgenic plants for disease resistance. Transgenic
	ornamental and fruit plants. Engineering facilities for abiotic stress tolerance.
	Biopolymer production by transgenic plants. Fatty acid modification and
	oleosine technology. Gene silencing, PTGS, RNAi, Antisense technology,
	Applications. Plant micropropagation: Plant tissue culture: - History, Laboratory
	organization, Sterilization methods, Media preparation, Plant Growth
	Regulators, Micropropagation, Callus culture, Cell Culture, Protoplast Culture
	and Fusion, Organogenesis and Somatic embryogenesis. Application of tissue
	culture in product development in agriculture, horticulture and forestry. Plant
	Protection Methods, Haploid production: - Anther, Pollen, Embryo and ovule
	culture and applications.